Methods:  19-peptide was expressed in bacteria and purified with

Methods:  19-peptide was expressed in bacteria and purified with Sephadex G-15. SGC7901 gastric

carcinoma cells and human umbilical-vein endothelial cells (HUVECs) were exposed to 19-peptide in vitro, and their viability was evaluated by biochemical and histopathological CHIR-99021 price analysis. In vivo, pieces of solid tumor derived from SGC7901 cells were inoculated into the gastric serosa of 36 nude mice, with a biological glue to hold them in place. Twenty-eight days after injection of 19-peptide, the mice were killed. The tumors were measured and examined by western blotting, histopathology, and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay. Results:  19-peptide induced apoptosis of many SGC7901 cells but few HUVECs in vitro. In vivo, after the application of 19-peptide, significant tumor cell apoptosis was observed in the center of the tumors, tumor volume was reduced significantly (P < 0.001), and the invasion and migration of cancer cells was reduced. PTEN was increased in the selleck inhibitor treatment group and phospho-Akt (pAkt) was decreased in the control group. Conclusions:  These results suggest that 19-peptide inhibits

the growth and metastases of poorly differentiated gastric carcinoma cells, primarily by inducing apoptosis. The apoptotic mechanism could be related to anoikis and the PTEN/Akt pathway. “
“Nonalcoholic fatty liver disease (NAFLD) may lead to hepatic fibrosis. Dietary habits affect gut microbiota composition, whereas endotoxins produced by Gram-negative bacteria stimulate hepatic fibrogenesis. However, the mechanisms of action and the potential effect of microbiota in the liver are still unknown. Thus, we sought to analyze whether microbiota may interfere with liver fibrogenesis. Mice fed control (CTRL) or high-fat diet (HFD) were subjected to either bile duct ligation (BDL) or CCl4 treatment. Previously gut-sterilized mice were subjected to Non-specific serine/threonine protein kinase microbiota transplantation

by oral gavage of cecum content obtained from donor CTRL- or HFD-treated mice. Fibrosis, intestinal permeability, bacterial translocation, and serum endotoxemia were measured. Inflammasome components were evaluated in gut and liver. Microbiota composition (dysbiosis) was evaluated by Pyrosequencing. Fibrosis degree was increased in HFD+BDL versus CTRL+BDL mice, whereas no differences were observed between CTRL+CCl4 and HFD+CCl4 mice. Culture of mesenteric lymph nodes showed higher density of infection in HFD+BDL mice versus CTRL+BDL mice, suggesting higher bacterial translocation rate. Pyrosequencing revealed an increase in percentage of Gram-negative versus Gram-postive bacteria, a reduced ratio between Bacteroidetes and Firmicutes, as well as a dramatic increase of Gram-negative Proteobacteria in HFD+BDL versus CTRL+BDL mice. Inflammasome expression was increased in liver of fibrotic mice, but significantly reduced in gut.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>