Patients with X-linked agammaglobulinaemia (XLA; n = 15) remained infection free, with an immunoglobulin Tofacitinib supplier dose ranging from 0·5–0·9 g/kg/month, and resultant serum IgG levels were 8–13 g/l. Patients with XLA required a significantly higher mean dose (0·67 ± 0·12 g/kg) to prevent all infections compared with patients with CVID (0·53 ± 0·19 g/kg; P = 0·01). This observation is likely to reflect the greater severity of antibody deficiency in XLA patients; evidence suggests that high serum IgG levels probably protect against the development of enteroviral meningoencephalitis
[6]. That the optimal serum IgG levels required to prevent breakthrough infection varied from patient to patient suggests that therapy efficacy should be evaluated by clinical outcomes and not simply the achievement of a particular serum IgG level, a conclusion shared by many investigators [5,7–9]. In this satellite symposium sponsored by CSL Behring, Chair Jordan Orange described current immunoglobulin therapy trends and practice based on results from various clinical studies. Bodo Grimbacher discussed results from well-organized, extensive, statistically evaluated patient data from the European Society for Immunodeficiencies (ESID) Sorafenib mouse online patient registry. Siraj Misbah presented insights from clinical
interventions and outcomes with immunoglobulin administered through the subcutaneous route. Finally, Taco Kuijpers showed that the variability in IgG Fc receptor genes can have an impact upon therapy with polyclonal IgG. Together, these advances in the basic and clinical science of immunoglobulins provide new perspectives in using polyclonal IgG therapy
and enable physicians to provide today optimal IgG therapy for patients with PI. Immunoglobulin replacement therapy has improved Thiamine-diphosphate kinase the lives of patients with PI in measureable ways. Since the initiation of immunoglobulin therapy in the 1950s, mortality of patients with PI has decreased and life expectancy has increased substantially to the present day. Clinicians have searched for suitable end-points for evaluating the efficacy of IgG therapy. IgG therapy has improved morbidity as measured by a reduction in the number of pneumonia events from 0·82 to 0·12 per patient/year (P = 0·006) [10]. This is a substantial improvement in the treatment of primary immunodeficiencies, despite that this rate is still higher than that for the general population (five to 11 cases per 1000 individuals [11–13]). An improved health-related quality of life (HRQL) for patients with CVID receiving immunoglobulin replacement compared to those not receiving immunoglobulin therapy has been shown through fewer days in hospital (12·5 versus 19·8 days/year, respectively) and days missed off work or school (6·1 versus 23·3 days/year, respectively) [14].