Finally, the gap gene of the identified S lugdunensis isolates <

Finally, the gap gene of the identified S. lugdunensis isolates learn more was sequenced as the confirmatory detection

tool. The following primers were used to amplify 933 bp of the gap gene [19]: 5′-ATGGTTTTGGTAGAATTGGTCGTTTA-3′ (forward) and 5′-GACATTTCGTTATCATACCAAGCTG-3′ (reverse). The PCR reaction was performed in a volume of 25 μL with 2.5 μL of 10× PCR Buffer (Mg2+ Plus), 2 μL of 2.5 mM dNTPs, 1 μL of 10 μM primers, 0.025 U Taq DNA polymerase (TaKaRa), 15.5 μL of double distilled water (DDW), and 4 μL of target DNA. The amplification was performed using a Veriti Thermal Cycler (Applied Biosystems, Foster City, CA) with an initial www.selleckchem.com/products/blz945.html denaturation at 94°C for 2 min, 40 cycles of denaturation at 94°C for 20 s,annealing at 55°C for 30 s, elongation at 72°C for 40 s, and a final elongation at 72°C for 5 min. The sequences were aligned to the S. lugdunensis sequence (GenBank accession number AF495494.1) using the BLASTN 2.2.26+ program [33]. Isolates were confirmed to be S. lugdunensis if the sequence similarity was greater BB-94 supplier than 99%.

Detection of antimicrobial susceptibility and resistance genes β-lactamase was detected with the rapid detection kit (bioMérieux, France) using Staphylococcus aureus ATCC 29213 as positive control strain and Enterococcus faecalis (ATCC 29212) as a negative control strain. Drug susceptibility tests were performed and interpreted following M100-S20 standards set by the Clinical Laboratory Standards Institute (CLSI) in 2010 [34]. Susceptibility to vancomycin (VA), ampicillin/sulbactam (SA), cefazolin (CFZ), erythromycin (ERM), fosfomycin (FOS), cefoxitin (FOX), gentamicin (GM), clindamycin (DA), levofloxacin (LVX), linezolid (LZD), penicillin (P), rifampicin (RA), cefuroxime (CXM), and trimethoprim + sulfamethoxazole (SXT) was tested with the E-TEST and K-B methods using ATCC29213 and ATCC 25923 as control strains, respectively. S. lugdunensis isolates were tested for the antibiotic resistance genes ermA ermB ermC (erythromycin resistance), and mecA (cefoxitin resistance) using primer sequence and conditions described

before [35–37]. Briefly, the ermA and ermC genes were amplified with an initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 95°C for 50 s, annealing at 52°C for 45 s, elongation at 72°C for 50 s, and a final elongation at 72°C for 7 min. The parameters for PCR amplification of Cyclic nucleotide phosphodiesterase ermB were an initial denaturation at 95°C for 5 min, then 35 cycles of denaturation at 94°C for 50 s, annealing at 55°C for 50 s, elongation at 72°C for 1 min, and a final elongation at 72°C for 7 min. Amplification parameters for the mecA gene were an initial denaturation at 95°C for 5 min, then 30 cycles of denaturation at 95°C for 30 s, annealing at 50°C for 20 s, elongation at 72°C for 20 s, and a final elongation at 72°C for 5 min. Pulsed-Field Gel Electrophoresis (PFGE) Colonies of each isolate were suspended in 2 ml cell suspension buffer such that they read 4.

Comments are closed.