All these secreted proteins regulate cell adhesion [7, 8]. The extracellular domain of POSTN is evolutionarily conserved from humans to bacteria [9]. POSTN was first identified in MC3T3-E1 osteoblast-like cells [8], and it was preferentially expressed in periosteum in vivo [10]. The overexpression of a basic helix–loop–helix transcription
factor, Twist, is related to the increased expression of POSTN by binding to its promoter in preosteoblasts [11]. Twist plays a key regulatory role in early osteogenesis [12]. Inactivation of POSTN leads to a severe reduction of osteoblast-specific differentiation markers, such as type I collagen, osteocalcin, osteopontin, and alkaline phosphatase [13]. Recently, an animal study demonstrated that the Postn protein is essential for the down-regulation of sclerostin (Sost) and thereby plays an important role in the determination of bone mass and microstructural in response to loading [14]. SOST is important in bone Ilomastat and mineral metabolism, and its polymorphisms have previously been shown to associate with BMD [15]. These functional reports propose a role for POSTN in Selleckchem Talazoparib human osteoblast
differentiation and bone formation. This prompted us to perform a genetic association study between SNPs along the POSTN gene and osteoporosis phenotypes. We first selected the tag SNPs (tSNPs) of the POSTN gene and studied their relationship with BMD variation in a Hong Kong Southern Chinese (HKSC) population that included 1,572 subjects with extreme BMD. We then used the imputation approach to study the phenotypic associations with a more extensive fine map of polymorphisms around the gene region using the Asian population data of HapMap phase II as the reference. The significant association was further confirmed in another independent Hong Kong Osteoporosis Study (HKOS) prospective cohort with BMD (n = 2,509)
and vertebral fracture (n = 1,746) data. In addition, the finding from animal study may suggest the interactive effect between POSTN and SOST genes on regulating of BMD; thus, the interaction analysis was also conducted between these two genes in this study. Finally, the potentially biological function of the identified variant of POSTN gene was studied. O-methylated flavonoid Methods Subjects HKSC cohort with extreme BMD A total of 1,572 unrelated subjects (81.3% women) with either high or low BMD were selected from a growing database at the Osteoporosis Centre of the University of Hong Kong (>9,000 HKSC volunteers). Subjects that were reported to have diseases or environmental factors that may affect BMD and bone metabolism were excluded. The recruitment procedure and exclusion criteria have been detailed elsewhere [16]. BMD was measured at the lumbar spine (LS) and femoral neck (FN) by dual X-ray absorptiometry (Hologic QDR4500, Waltham, MA, USA). The in vivo precision of the machine was 1.2% and 1.5% for LS and FN BMD, respectively.