For example, while the PSBS protein, a member of the light harvesting family of proteins, may be critical for non-photochemical quenching of excess absorbed light energy in plants (Li et al. 2000), other light-harvesting family proteins, Vorinostat in vivo such as the LHCSRs, appear to be important for non-photochemical quenching in Chlamydomonas (Peers et al. 2009), while the orange carotenoid protein (OCP) is critical for non-photochemical quenching
in cyanobacteria (Wilson et al. 2006). Organisms adapted to different environments may also exploit various electron outlets or valves to control the increased excitation pressure that can occur when the photosynthetic apparatus absorbs more light energy than it can use in downstream anabolic processes. For example, the flow of electrons to O2 via the Mehler reaction
(oxidation of ferredoxin) may be significant in generating a specific redox poise that modulates cyclic electron flow around photosystem (PS) I and the formation of ATP, the activity of PSII, state transitions, non-photochemical quenching, and even aspects of chloroplast biogenesis (Asada 1999; Heber 2002; Makino et al. 2002; Forti Apoptosis inhibitor 2008). A plastoquinone terminal oxidase may also significantly participate in at least some of these regulatory processes in certain organisms (Rumeau et al. 2007; Bailey et al. 2008; Stepien and Johnson 2009). Mutant generation In Phosphatidylethanolamine N-methyltransferase previous reports, photosynthetic mutants in Chlamydomonas were Temsirolimus mouse identified based on their inability to assimilate 14CO2 (Levine 1960). Photosynthetic
mutants have been isolated based on their inability to grow in the absence of acetate (Eversole 1956), their resistance to metronidazole (Schmidt et al. 1977), or their chlorophyll fluorescence characteristics (Bennoun and Delepelaire 1982). Indeed, many fundamental discoveries leading to present-day knowledge of photosynthesis, including sequences of carriers critical for electron transfer, polypeptides involved in light harvesting and reaction center function, and enzymes of the Calvin–Benson–Bassham Cycle, have been elucidated through the generation and characterization of mutants (especially Chlamydomonas mutants) with lesions in components of the photosynthetic apparatus. Some processes critical for the dynamics of photosynthetic function have also been elucidated; these include state transitions and non-photochemical quenching. While the discoveries relating to photosynthetic structure and function are too numerous to detail here, many are summarized in various chapters of the new Chlamydomonas Sourcebook (Choquet and Wollman 2009; de Vitry and Kuras 2009; Finazzi et al.