The identification of targets of SSRIs and serotonin releasers during embryonic and early postnatal life helps understanding the very diverse physiological
consequences of administration of these drugs during development. (C) 2008 Elsevier Ltd. All rights reserved.”
“We isolated a clonal cell line (4E) from kidneys of mice expressing green fluorescent protein controlled by the endothelial-specific Tie2 promoter. When grown in a three-dimensional matrigel matrix they formed a fluorescent capillary network. In vivo angiogenesis assays using growth factor-depleted matrigel implanted plugs promoted a moderate angiogenesis of host endothelial cells. Using vascular endothelial growth factor (VEGF)-A and fibroblast growth factor-2 in the plugs containing 4E-cells resulted in a robust vasculogenesis. Transplantation of 4E cells into mice with acute renal ischemia
showed XAV-939 ic50 selective engraftment in the ischemic kidney which promoted tubular regeneration by increasing epithelial proliferation and inhibiting apoptosis. This resulted in an accelerated functional recovery 3 days after ischemia. These mice showed a 5-fold increase in tissue VEGF expression compared to controls, but no difference in plasma VEGF level corresponding with better preservation of peritubular capillaries, perhaps due to a local paracrine effect following systemic 4E infusion. One month after ischemia, 9% of engrafted 4E cells expressed green fluorescent protein in the peritubular region while half selleck inhibitor of them expressed alpha-smooth muscle actin. Our study shows that kidney mesenchymal Sapitinib in vivo stem cells are capable of differentiation toward endothelial
and smooth muscle cell lineages in vitro and in vivo, support new blood vessel formation in favorable conditions and promote functional recovery of an ischemic kidney.”
“Antidepressants such as Selective Serotonin Reuptake Inhibitors (SSRI) act as indirect agonists of serotonin (5-HT) receptors. Although these drugs produce a rapid blockade of serotonin transporters (SERTs) in vitro, several weeks of treatment are necessary to observe clinical benefits. This paradox has not been solved yet. Recent studies have identified modifications of intracellular signaling proteins and target genes that could contribute to antidepressant-like activity of SSRI (e.g., increases in neurogenesis and BDNF protein levels), and may explain, at least in part, their long delay of action. Although these data suggest a positive regulation of 5-HT on the expression of the gene coding for BDNF, the reciprocal effects of BDNF on brain 5-HT neurotransmission remains poorly documented. To study the impact of BDNF on serotonergic activity, a dual experimental strategy was used to analyze neurochemical and behavioral consequences of its decrease (strategy I) or increase (strategy 2) in the brain of adult male mice.