The measurement method yielded 5% accuracy for dielectric constant (�š�) and 3% for dielectric loss (�š�). Like other methods presented here this capacitive method requires supporting equipment and is not suitable for outdoor testing. In the selleck chemicals prevailing research works from the literature, the inductive concept has not been proposed and attempted for maturity determination of FFBs [20]. The proposed inductive concept is a non destructive testing method and show potentiality for outdoor testing [21,22]. The detection concept is based on the moisture content of the fruitlet, where the permeability value of water is 1.2566270 �� 10?6. With a low permeability value compared to other materials especially metals, a high frequency range is used to assist the detection. Theoretically, it is expected that the value of inductance for unripe fruitlets will be higher than that of ripe fruitlets due to the moisture content of the fruitlet. In this paper, the investigation of an oil palm fruit sensor based on a novel resonant frequency technique is presented. The study approach involves the use of inductance values in the high frequency range that are used in determining the maturity of the oil palm FFBs, specifically the ripe and unripe fruitlets. Further research on the categories of maturity such as under-ripe and overripe categories are to be investigated and will be reported in our future works. Since the value of inductance measured is very small (on the order of ��H), therefore resonant frequency is used for analysis in this investigation. The investigations on the frequency characteristics of the air coils of the sensor are studied to observe the effects of coil diameter as a preliminary evaluation. As for the inductance characteristics, the effect of the coil diameter on differences between samples non-distinguishable with the increase of the coil diameter value was studied. The effects of the variations in the coil diameter yields a significant difference of 0.02643 between unripe samples to air and 0.01084 for ripe samples to air. Results from this study would be useful in designing an oil palm fruit sensor based on the inductive concept and enhancing the potential of the sensor in classifying oil p
Mid-infrared (MIR) laser spectroscopy is an extremely useful tool to identify chemical and biological substances. In this so called ��fingerprint�� region (3�C20 ��m) most molecules have their vibrational and rotational resonances, which can be observed by narrow optical absorption lines or changes of the refractive index. Much effort has been devoted to reducing the size of spectroscopic setups down to chip-scale dimensions. However, the goal of monolithic integration has not been reached yet. To build monolithic integrated photonic sensors, it is necessary to emit and detect light with the proper wavelength, as well as to provide sufficient interaction with the observed substance.