The transcriptional profile

of the jamaicamide biosynthet

The transcriptional profile

of the jamaicamide biosynthetic gene cluster presented here provides insight into the mechanisms by which these pathways are transcribed and potentially regulated. Future Poziotinib price advances in classifying promoters and transcription factors MLN4924 order for cyanobacterial gene clusters will be important to diverse applications in biotechnology, such as combinatorial biosynthesis and the heterologous expression of entire natural product pathways. Additionally, this information should also benefit ongoing efforts attempting to regulate the expression of cyanobacterial toxins with deleterious environmental impacts. Methods Bacterial strains, culture conditions, PCR reactions, and DNA measurements Lyngbya majuscula JHB was originally collected from Hector’s Bay, Jamaica [6] and was maintained in a culture facility at Scripps Institution of Oceanography. Cultures were grown in BG-11 saltwater media at 29°C under a light intensity of approximately 5 μE m-2 s-1 and under 16 h light/8 h dark cycles. E. MAPK inhibitor coli TOP-10 and BL-21 (DE3) were grown in Luria-Bertani (LB)

media. E. coli cultures were grown with ampicillin (100 μg ml-1), or kanamycin (50 μg ml-1) when necessary. PCR reactions were conducted using either PCR Master Mix (Promega) or Pfx50 proofreading Taq Polymerase (Invitrogen). DNA concentrations were measured using either Beckman-Coulter DU800 or NanoDrop 1000 (Thermo Depsipeptide datasheet Scientific) spectrophotometers. Protein concentrations for recombinant JHB proteins were determined using the BCA assay (Pierce). Ladders for DNA (Fermentas and New England Biolabs) and protein (Bio-Rad) were used for size estimations when necessary. RT-PCR using L. majuscula RNA to search for the transcription start site (TSS) and promoter regions in the jamaicamide pathway Cyanobacterial filaments (approximately 2 g wet weight) from a culture of the jamaicamide

producing strain of L. majuscula JHB were harvested and subjected to RNA isolation using TRIzol reagent (Invitrogen) and procedures based on those recommended by the manufacturer with minor modifications. RNA was treated with TURBO DNAse (Ambion) for 2 h at 38°C before use in cDNA reactions. To verify that genomic DNA contamination was not present, in selected cases negative control reactions were run in parallel with cDNA reactions in which reverse transcriptase enzyme was omitted. For the primer extension experiment, first strand cDNA was synthesized from the RNA using the primer upjamA 20-0 R (Sigma Genosys; Additional file 1: Table S1) and the Superscript III Reverse Transcriptase Protocol (Invitrogen) with minor modifications. Second strand reactions were conducted with primers ranging from 500-902 bp upstream in 50 bp increments to determine where RNA transcription upstream of jamA initiated.

Comments are closed.