These findings indicate that the modulation of S1P-metabolizing e

These findings indicate that the modulation of S1P-metabolizing enzymes is crucial for controlling

the host defense against infection with influenza virus. Thus, S1P-metabolizing buy RG7112 enzymes are novel potential targets for the treatment of diseases caused by influenza virus infection.”
“Many brain protective strategies have been tested over short survival intervals, but few have been examined for long term benefit. The inducible member of the Heat shock protein 70 (Hsp70) family, Heat shock protein 72 (Hsp72), has been widely found to reduce ischemic injury. Here we assessed outcome in Hsp72 transgenic overexpressing mice and wild type littermates for one month following transient focal ischemia. Hsp72 reduced infarct area lost and improved behavioral outcome on rotarod and foot fault at one month. Thus protection by Hsp72 overexpression is long lasting, and includes improved recovery of motor function over one month. (C) 2010 Elsevier Ireland Ltd. All rights reserved.”
“Respiratory

syncytial virus (RSV) is a major cause of virus-induced respiratory disease and hospitalization in infants. Palivizumab, an RSV-neutralizing monoclonal antibody, is used clinically to prevent serious RSV-related respiratory disease in high-risk infants. Motavizumab, an affinity-optimized version of palivizumab, was developed to improve protection against RSV. These antibodies bind GSK621 cell line RSV F protein, which plays a role in virus attachment and mediates fusion. Determining how these antibodies neutralize RSV is important to help guide development of new antibody drugs against RSV and, potentially, other viruses. This study aims to uncover the mechanism(s) by which palivizumab and motavizumab neutralize RSV. Assays were developed to test the effects of these antibodies at distinct steps during RSV replication. Pretreatment of virus with palivizumab or motavizumab cAMP did not inhibit virus attachment or the ability of F protein to interact with the target cell

membrane. However, pretreatment of virus with either of these antibodies resulted in the absence of detectable viral transcription. These results show that palivizumab and motavizumab act at a point after F protein initiates interaction with the cell membrane and before virus transcription. Palivizumab and motavizumab also inhibited F protein-mediated cell-to-cell fusion. Therefore, these results strongly suggest that these antibodies block both cell-to-cell and virus-to-cell fusion, since these processes are likely similar. Finally, palivizumab and motavizumab did not reduce viral budding. Based on models developed from numerous studies of viral fusion proteins, our results indicate that these antibodies may prevent conformational changes in F protein required for the fusion process.

Comments are closed.