We found that the surface protein A (SasA) of S aureus could pro

We found that the surface protein A (SasA) of S. aureus could protect mice from lethal challenge of the bacteria. Staphylococcus aureus, a conditional pathogenic Gram-positive bacterium, is the leading cause of bloodstream, lower respiratory tract and skin/soft-tissue infections, accounting for 20–25% of all nosocomial infections (1,2,3). Bacteremia is the most prevalent type of S. aureus infections in hospitalized patients, followed by lower respiratory tract infections and skin/soft tissue infections (4,5). S. aureus is able

to adapt to new antibiotics and acquire antibiotic resistance (6). The extensive use of antibiotics has resulted in increased resistance among S. aureus clinical isolates. In patients with large area burn, it was found that more than 90% of S. aureus isolates were resistant to 11 types of antibiotics, including ampicillin, cefazolin, ciprofloxacin, gentamicin, levofloxacin, clidamycin, erythromycin, oxacillin, penicillin(16). buy STA-9090 Due to multi-drug resistance and the ability to PLX3397 acquire resistance to new antibiotics quickly, it is more and more difficult to treat S. aureus infection, especially with the emergence of vancomycin resistant S. aureus strains (7,8). As a result, many investigators resort to immunological approaches to contain S. aureus infection (9). Many components of S. aureus, such as capsular polysaccharide (9), poly-N-acetylglucosamine

(10), clumping factor A (11), clumping factor B (12), iron-regulated surface determinant (IsdB) (13) and fibronectin-binding protein (FnBP) (14), can generate immune responses that afford partial protection against S. aureus challenge in experiment animals. It is difficult to develop S. aureus vaccines because there are many pathogenic determinants in S. aureus and different clinical isolates may have different pathogenic determinants. Ideal vaccine candidates for S. aureus should be expressed broadly in different S. aureus

clinical isolates and be consistent among different strains. Vaccines consisting of several components may induce better protective immunity against infective selleck chemical S. aureus (15). In this study, to screen good vaccine candidates against S. aureus, a panel of pathogenic proteins of S. aureus was expressed and dot blotted with sera from mice infected with S. aureus USA300, 546 and 1884, respectively. The proteins that interact with the sera were selected to immunize BALB/c mice. The immunized mice were then challenged with S. aureus USA300. A protein named SasA was found to be able to induce protective immunity against lethal challenge of S. aureus USA300. Staphylococci were cultured on tryptic soy agar or in broth at 37 °C. S. aureus USA300 were obtained from ATCC. This strain does not produce toxic shock syndrome toxin. The lethal dosage of S. aureus USA300 or S. aureus 546 was determined before as in respectively. S. aureus 546 and S. aureus 1884 were obtained from China Veterinary Culture Collection Center (CVCC). E.

Comments are closed.