The ecology of most rainforest mammals in Indonesia is poorly kno

The ecology of most rainforest mammals in Indonesia is poorly known, because these species tend to be shy and secretive and therefore difficult to study. This situation is even more acute for medium-large bodied mammal taxa as they typically occur at naturally low population densities. It is therefore ironic that one of Indonesia’s largest mammal species, the Sumatran

tiger Panthera tigris sumatrae, which occurs at the some of the lowest population densities, due to its trophic status and poaching pressures, is one of the country’s best studied. Scientific research on the Sumatran tiger has been enabled by the introduction of camera-trap equipment and associated statistical sampling techniques (Karanth & Nichols, 1998). The overwhelming majority of these studies have estimated tiger population densities with varying levels of precision (O’Brien, Kinnaird & Wibisono 2003; Wibisono et al., 2009) and their this website spatial habitat use across landscapes with varying levels of disturbance (Kinnaird et al., 2003; Linkie et al., 2006, 2008a). Yet, basic information about interactions between Sumatran tiger and

Lenvatinib supplier their prey, prey ecology or even which species represents principal tiger prey is still lacking. According to the foraging theory, prey such as tapir should be preferentially selected given its large body and presumed low risk posed, being predominantly solitary and lacking tusks, horns, antlers or other defence weapons that might injure

a marauding tiger. To investigate interactions between tiger and their prey, studies should focus on their spatial and temporal dimensions. Thus, strong overlap for both of these is expected for the principal prey species as this will increase tiger encounter rates with these species. In the only study to investigate such patterns, O’Brien et al. (2003) found a significant spatial relationship between Sumatran tiger and wild pig (Sus sp., P<0.05) and sambar Cervus unicolor (P<0.10). Fossariinae Camera traps also provide information about daily activity patterns of different species, but to date there has been no comparative study of activity patterns between the Sumatran tiger and its putative prey species. Recently, Ridout & Linkie (2009) developed a statistical technique for estimating daily activity pattern overlap between sympatric felid species using camera-trap data that includes a measure of precision of the estimated overlap value. In this study, we apply the methodology of Ridout & Linkie (2009) on camera trap data from the Kerinci Seblat (KS) region to investigate the overlap of predator–prey activity patterns, focusing on the Sumatran tiger and its five presumed principal prey of sambar, red muntjac Muntiacus muntjac, wild pig Sus scrofa, pig-tailed macaque Macaca nemestrina and Malayan tapir Tapirus indicus.

Comments are closed.