Our results by FEM have shown a very good agreement with our experimental observations, showing that this is a very useful tool for the analysis of the strain distribution in semiconductor systems. The combination of APT with FEM opens up the possibility of understanding the behaviour of complex semiconductor systems where strain plays a major role. Authors’ information JHS
is a PhD student at the Universidad de Cádiz. MH is an Associate Professor at the Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz. SD holds an Associate Professor at Université et INSA de ROUEN and he is the responsible of the Matériaux de la Microélectronique et de la Photonique (ER2MP) group. SIM is a full professor at the Departamento BYL719 cost de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz and the head of the Materials and Nanotechnology for Innovation group (INNANOMAT). This group belongs to the Institute of Electron Microscopy and Materials (interim stage) of the University of Cádiz. Acknowledgements This work was supported by the Spanish MINECO (projects TEC2011-29120-C05-03 and Consolider Ingenio 2010 CSD2009-00013), the Junta de Andalucía (PAI research group TEP-946 INNANOMAT), and METSA project. The authors greatly acknowledge J. Houard for discussion and help in APT analyses MM-102 price and Prof. C. R. Stanley from University of Glasgow for QD sample fabrication.
References 1. Stokes EB, Stiff-Roberts AD, Dameron CT: Quantum dots in semiconductor optoelectronic devices. Electrochemical Society Interface 2006, 15:23–27. 2. Peng J, Fu ZG, Li SS: Tunable Dirac cone in the rectangular MK-0457 concentration symmetrical semiconductor quantum dots array. Appl Phys Lett 2012, 101:222108.CrossRef 3. Lam AW, Ng TY: Electronic confinement in self-assembled quantum dots (SAQD) modeled with a new interfacial capping layer. Comp
Mater Sci 2010, 49:S54-S59.CrossRef 4. Marti A, Cuadra L, Luque A: Quantum dot intermediate band solar cell. In Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000: September 15–22, 2000. Anchorage, Alaska, New York: IEEE; 2000:940–943. 5. You MH, Li ZG, Gao X, Qiao ZL, Wang Y, Liu GJ, Li L, Li M: Long wavelength strain-engineered InAs five stacks quantum dots laser diode Dolutegravir price growth by molecular beam epitaxy. Optik 2013, 124:1849–1851.CrossRef 6. Kim JO, Sengupta S, Barve AV, Sharma YD, Adhikary S, Lee SJ, Noh SK, Allen MS, Allen JW, Chakrabarti S, Krishna S: Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors. Appl Phys Lett 2013, 102:011131.CrossRef 7. Tersoff J, Teichert C, Lagally MG: Self-organization in growth of quantum dot superlattices. Phys Rev Lett 1996, 76:1675–1678.CrossRef 8. Holy V, Springholz G, Pinczolits M, Bauer G: Strain induced vertical and lateral correlations in quantum dot superlattices. Phys Rev Lett 1999, 83:356–359.CrossRef 9.